
Combining Bayesian inference with Neural

Networks

Philip Botros

June 2020

1 Introduction

It might be confusing at first how to reconcile the principles of Bayesian Inference
with the framework of neural networks. Especially given the size of modern
architectures and the nature of stochastic gradient based optimization which
are usually not covered in Bayesian statistics resources.

I would like to show how to integrate Bayesian thinking into modern neural
networks and how to create a tractable approximation that can be computed in
practice. Furthermore, this technique is out of the box amenable to standard
automatic differentiation techniques only requiring minor modifications to the
usual training process, called Bayes by Backprop [2].

2 Background

2.1 Maximum likelihood estimation

Usually we estimate the weights of a statistical model by performing maximum
likelihood estimation (MLE), in other words, directly maximizing a certain like-
lihood function with respect to our model parameters:

θ̂MLE = arg max
θ∈Θ

L(D|θ)

This implicitly assumes that all the information we need to converge to a
good solution can be found in the observed data, which might be a limiting
assumption.

2.2 Incorporating prior information

A follow up on this completely data-driven approach of parameter estimation is
by incorporating prior information p(θ) on our weights before we have observed
any data. This implies that we treat the parameters of a model as a random
variable instead, following Bayes rule we get:

1

p(θ|D) =
p(D|θ)p(θ)
p(D)

We have two options now: (1) estimating the most likely parameter setting
given the prior and the observed data or (2) go full Bayesian and estimate the
complete posterior distribution.

2.2.1 Maximum a posteriori estimation

The first option is called maximum a posteriori estimation (MAP) and is not
strictly Bayesian, since we still not obtain a posterior distribution but a point
estimate:

θ̂MAP = arg max
θ∈Θ

p(D|θ)p(θ)

Note that this coincides with the MLE estimator if our prior is completely
uniform (constant for all parameter values). The nice property of MAP estima-
tion is that we do not have to compute the marginal likelihood p(D) since we
are solving an optimization problem (we can regard p(D) as a constant), which
strongly simplifies the problem from a computational point of view. We do,
however, lose the ability to marginalize over our weights.

2.2.2 Full Bayesian treatment

The second option is more involved, if we would like to perform full Bayesian
inference there is usually no escaping computing the marginal likelihood. This
gives us access to the predictive distribution that we are interested in for a new
data point x∗:

p(y∗|x∗) = Ep(θ|D)[p(y
∗|x∗, θ)] =

∫
p(y∗|x∗, θ)p(θ|D)dθ

A full Bayesian treatment thus corresponds to making predictions with an
infinite ensemble of models, where a given prediction is weighted by the model
probability. In contrast, MLE and MAP only make predictions using a single
setting of the parameters, using the mode of the likelihood or posterior corre-
spondingly. This does not properly model any uncertainty we might have with
respect to this parameter setting but is a good enough approximation for a lot
of cases of practical interest. Note that the MAP and posterior are equivalent
if the posterior is a Dirac delta function centered at the mode.

2

Figure 1: The introduction of the prior effectively weights the likelihood to
obtain the posterior, shifting the most probable estimate to the left.

2.3 Computing posteriors in practice

How do we do this in practice? Integrating over our model parameters seems
hard, luckily, we have a few options to make this easier. The most straightfor-
ward way of computing the full posterior distribution is by deriving an analytical
solution. In certain cases, when the prior distribution has the same functional
form as the likelihood function (conjugate prior), we can calculate the posterior
in closed form.

2.3.1 Bayesian linear regression

Take a vanilla linear regression model with assumed Gaussian noise, the likeli-
hood in this case will be:

p(D|θ) =
∏
i

N (yi|, θTxi, σ2) = N (y|,Xθ, σ2I)

Maximizing this directly will obviously lead to an estimation of θ that will
represent the observed input and label pairs as closely as possible. But what if
we have very little data or we assume certain properties in our real world process
that might not have been properly represented in the data we have collected?

The conjugate prior of a Gaussian is a Gaussian, so if we add a prior of the
same form we can derive an analytical form of the posterior, which will also
be Gaussian. Let us put a prior of p(θ) = N (µ0,Σ0) on our weights, now our
posterior will be:

p(θ|D) ∝ p(D|θ)p(θ) = N (y|,Xθ, σ2I)N (θ|µ0,Σ0)

= N (θ|µN ,ΣN)

µN = ΣN
(
Σ−1

0 µ0 + σ−2XTy
)

ΣN =
(
Σ−1

0 + σ−2XTX
)−1

3

The posterior mean is a weighted combination of the prior mean and like-
lihood estimate (inversely weighted by the variance), while the new covariance
matrix is a sum of the prior and data variance. Furthermore, we can compute
the predictive distribution in closed form as well (surprise, it will be Gaussian):

p(y∗|x∗) =

∫
p(y∗|x∗, θ)p(θ|D)dθ =

∫
N (y∗|θTx∗, σ2)N (θ|µN , σ2

N)dθ

= N (y∗|µTNx∗,x∗ΣNx∗ + σ2)

= N (y∗|µTNx∗, x∗ΣNx∗︸ ︷︷ ︸
parameter uncertainty

+ σ2︸︷︷︸
data uncertainty

)

See Bishop for a detailed derivation of both [1]. The mean of the predictive
distribution is simply the prediction using the parameters of the mean of the
posterior, this is thus also equivalent to the MAP prediction in this case, since
the mode of a Gaussian is equivalent to its mean. The estimated uncertainty
can be decomposed in two parts, uncertainty about the parameters (which will
go to zero if n→∞), and the data uncertainty, the irreducible error we have in
the linear regression model, representing effects our model is not able to model.

Figure 2: The predictive distribution of a Bayesian Linear Regression. Note
that for every prediction we now have a corresponding confidence interval.

2.3.2 Non-analytical solutions

Unfortunately, computing an analytical solution is not feasible for most prob-
lems of interest, we have to resort to sampling methods or (variational) approx-
imations to estimate the posterior distribution.

Sampling methods disregard the idea of learning a parametric posterior and
instead only want to be able to draw samples from the posterior. Based on
samples from this posterior we can estimate certain moments of interest that

4

characterize this posterior. For instance, we can approximate the mean of the
predictive distribution by averaging over N samples of the posterior:

E[p(y∗|x∗)] ≈ 1

N

N∑
i=1

p(y∗|x∗, θ(i))

However, being able to sample from high probability regions in high dimen-
sions is a very hard problem (and slow) and this renders sampling methods
impractical for a lot of problems of interest.

Variational methods on the other hand assume that we can learn a simplified
known proposal distribution q that will be close enough to the actual posterior.
In turn, finding this approximate distribution turns calculating an intractable
integral into a tractable optimization problem. A disadvantage of this method
is that there is no guarantee that the flexibility of the approximation family
with respect to our real posterior will be sufficient for our problem of interest,
even in the asymptotic case. In the case of learning an approximate posterior
on the weights we can write:

θ∗ = arg min
θ∈Θ

KL
(
q(w|θ)||p(w|D)

)
= arg min

θ∈Θ

∫
q(w|θ) q(w|θ)

p(w)p(D|w)
dw

= arg min
θ∈Θ

KL
(
q(w|θ)||p(w)

)
− Eq(w|θ)[log p(D|θ)]

This resulting function is commonly called the variational free energy or varia-
tional lower bound and tractable to optimize, since we removed the dependency
on the actual posterior p(w|D).

Figure 3: The difference between the approximation methods illustrated.
MCMC tries to approximate the posterior by drawing samples from it. VI
approximates it by calculating the parameters that will put the approximate
(simplified) distribution closest to the actual posterior.

5

3 Bayesian Neural Networks

We can interpret a neural network as a probabilistic model that takes as input
x and produces p(y|x, θ). Unlike linear regression, where θ was a single layer of
parameters, we now have a succession of layers and non-linear transformations.

If we train this in the usual way, i.e. with a cross-entropy loss for classifica-
tion or a mean squared error loss for regression (any suitable error function E),
we recover the MLE estimator (denoting our network by fθ):

θ̂MLE = arg max
θ∈Θ

L(D|θ) = arg min
θ∈Θ

∑
i

− logE(fθ(xi), yi)

Another option regularly employed is to add L1 or L2 regularization, in
which case we perform MAP estimation on the parameters of our network. L1
or L2 regularization are equivalent to placing a Laplacian or Gaussian prior on
the weights respectively.

3.1 Fully Bayesian NN

However, as before, we do not want a point estimation of our neural network but
a full posterior distribution over our weights. By obtaining this we have access
to our predictive distribution which, in theory, will give us proper uncertainty
bounds on our predictions. Recall the form of the predictive distribution:

p(y|x) = Ep(w|D)[p(y|x,w)] =

∫
p(y|x,w)p(w|D)dw

Note that we are taking the expectation with respect to the weights of our
neural network. Computing this in exact form is intractable for the most neural
networks of practical size.

Figure 4: Left: a standard neural network with a scalar value per weight. Right:
a Bayesian neural network with a distribution per weight [2]

6

3.2 Bayes by Backprop

To circumvent the intractability of the posterior Blundell et al. [2] resort to
variational inference. Remember that the variational lower bound is given by:

F = KL
(
q(w|θ)||p(w)

)
− Eq(w|θ)[log p(D|θ)]

How can we compute this quantity in a stochastic gradient based optimiza-
tion scheme, where especially the term on the right seems challenging, the ex-
pectation of the likelihood with respect to the variational distribution? The
authors simply choose to approximate it by Monte Carlo sampling:

F ≈
n∑
i=1

log q(w(i)|θ)− log p(w(i))− log p(D|w(i))

Where, under certain conditions with respect to the chosen form of our
posterior distribution, we can backpropagate the loss obtained using our sam-
pled representation of our weights through the network in a similar vein as the
reparametrization trick of the VAE.

3.3 Gaussian example

To make it more concrete, assume a diagonal Gaussian posterior. We can make
a sample of our posterior weights w(i) differentiable by performing our sampling
in the following way:

1. Sample ε ∼ N (0, I)

2. Let w(i) = µ+ σ � ε

Basically, using this formulation, we remove the stochasticity from our model
parameters outside of our graph to ε. Now we can simply backpropagate our
loss with respect to our variational parameters µ and σ given that we regard a
sample of ε as fixed using F .

We can, in theory, use any prior we want as long as its density is easy to
compute and differentiable with respect to our model parameters. To keep it
simple however, the authors propose using a standard Gaussian prior or a more
complicated scale mixture prior of two Gaussians:

p(w) =
∏
j

πN (wj |0, σ2
1) + (1− π)N (wj |0, σ2

2)

To see the benefits of the latter and to illustrate the power of using proper
priors note that we know have the freedom to encode our preferences into the
weights of our model using σ2

1 and σ2
2 . For instance, by setting one σ2 close to

zero we can encode our preference to have a sparse network such that we can
prune nodes after training for a reduced memory footprint and quicker inference.

7

For clarity, let us write out what the contribution to the variational free
energy will be for one particular example k using a sampled representation i
and a standard Gaussian prior and a Gaussian posterior:

F (i)
k ≈

∑
j

logN (w
(i)
j |µj , σ

2
j)−

∑
j

logN (w
(i)
j |0, 1)− E(f(xk|w(i)), yk)

Where the last term E will be a suitable error function, i.e. the cross entropy
for classification. This shows that the final objective function is nothing more
than: (1) the log probability of the sampled weights under the corresponding
parameters of that particular weight, (2) the log probability of the sampled
weights under the chosen prior and (3) the classification loss. Note that we can
compute the first two terms by summing the individual log probabilities since
we assume the weights to be independent.

Also, by having a distribution over our weights our model has to be robust
to minor perturbations of the weights, leading to better regularization. Dropout
uses the same principle, but adds noise to the activations instead of the weights
[7].

4 Limitations

Assuming independence between the weights is a very restrictive assumption,
as we expect the real posterior to be highly complicated. This can be seen in
Figure 5, where the simplified variational posterior is not expressive enough to
model the data generating process correctly. On the other hand, the sampling
based method (HMC) is able to not only model the data uncertainty, but also
the function itself relatively correct.

(a) Posterior uncertainty under varia-
tional inference

(b) Posterior uncertainty under Hamil-
tonian Monte Carlo

Figure 5: Difference in quality of the estimated posterior. We see that the
sampling based method (HMC) outperforms the variational inference one both
on accuracy and uncertainty estimates. [4]

8

More recent work has focused on improving the expressivity of the approx-
imate posterior, [5] use normalizing flows to transform the simple base (Gaus-
sian) distribution into a more expressive one. Another approach uses a low
rank approximation of the full covariance to improve on the restrictive diag-
onal covariance typically used [6]. Although this did improve the quality of
the posterior, [3] showed that there are still fundamental issues with variational
Bayesian methods, only capturing uncertainty at one mode, thereby failing to
produce the multimodal distribution we are looking for.

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424,
2015.

[3] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles:
A loss landscape perspective. arXiv preprint arXiv:1912.02757, 2019.

[4] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backprop-
agation for scalable learning of bayesian neural networks. In International
Conference on Machine Learning, pages 1861–1869, 2015.

[5] Christos Louizos and Max Welling. Multiplicative normalizing flows for vari-
ational bayesian neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2218–2227. JMLR. org,
2017.

[6] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and
Andrew Gordon Wilson. A simple baseline for bayesian uncertainty in deep
learning. In Advances in Neural Information Processing Systems, pages
13132–13143, 2019.

[7] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–1958,
2014.

9

